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RATIONAL TRIGONOMETRIC APPROXIMATIONS

USING FOURIER SERIES PARTIAL SUMS

James F. Geer'

Department of Systems Science

Watson School of Engineering and Applied Science

State University of New York

Binghamton, NY 13902

ABSTRACT

A class of approximation.s {,5'N,M } to a periodic function f which uses tile ideas of Pad6, or

rational function, approximations based on the Fourier series representation of f, rather than

oil the Taylor series representation of f, is introduced and studied. Each approximation ,q'X,M

is the quotient of a trigonometric polynomial of degree N and a trigonometric polynomial

of degree M. The coefficients in these polynomials are determined by requiring that an

appropriate number of the Fourier coefficients of ,gN,M agree with those of f. Explicit

expressions are derived for these coefficients in terms of the Fourier coefficients of f. It is

proven that these "Fourier-Pad6" approximations converge point-wise to (f(x +) + f(,r-))/2

more rapidly (in some cases by a factor of 1/k 2M) than the Fourier series partial sums

on which they are based. The approximations are illustrated by several examples and an

application to the solution of an initial, boundary value problem for the simple heat equation

is presented.

1This research was supported by the National Aeronautics and Space Administration under NASA (:on-
tract No. NAS1-19480 while the author was in residence at the Institute for (;omput.er Applications in

Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681.





1. Introduction. Fourierseriesareusedwidely in manybranchesof applied math-

ematics. For example, they are often used together with separation of variables to con-

struct analytical solutions to boundary value problems for differential equations and

with a variety of spectral methods to find approximate solutions to these problems nu-

merically. For practical purposes, approximate solutions to these problems are often

obtained using only a finite number of the terms in a Fourier series. This trunca-

tion procedure often leads to nonuniformly valid approximations. For example, when

the function being approximated has a point of discontinuity, the Gibbs phenomena is

present. The "oscillations" caused by this phenomena typically propagate into regions

away from the singularity, and, hence, degrade the quality of the partial sum approx-

imation in these regions. Even if the function being modeled is analytic, but has a

region of large slope or curvature, there can be significant oscillations in the partial

sums outside these regions, which again degrade the quality of the approximation.

Recently, Gottlieb and Shu [6] and Gottlieb, et.al. [7] have proposed a way of

overcoming the Gibbs phenomena. Their technique involves the construction of a new

series using the Gegenbauer polynomials C_(x). For a function f that is analytic on

the interval [-1, 1], but is not periodic, they prove that their technique leads to a series

which converges exponentially to f in the maximum norm. To do this, they require

that the parameter A, which appears in the weight factor (1 - x2) _-1/2, grows with

the number of Fourier modes considered. As we shall demonstrate below, the family

of approximations we shall introduce can be defined explicitly in terms of the known

Fourier coefficients. This will prove to be particularly useful for certain applications (as

we shall demonstrate) when the Fourier coefficients are themselves functions of one or

more other variables. Although the approximations we shall define do not "eliminate"

the Gibbs phenomena, they do mitigate its effect, as we shall show. This is especially

true outside a "small" neighborhood of a point of discontinuity of f, where, for practical

purposes, the "unwanted" oscillations can essentially be eliminated.

To fix notation, we let f (x) be a piece-wise smooth, 27r-periodic function. Then

we can associate with f(x) its Fourier series S(x) defined by

oo

(1) S(x) = ao/2 + ___(a,_cos(nx) + b,_sin(nz)),
n=l

f L(2) a,_ = f(x)cos(nx)dx, b, = f(x)sin(nx)dx,
lr

n = 0, 1, 2, .... (For some of our formulas below, it is convenient to regard the coefficients

{an, bn} as being defined by (2) for negative as well as positive values of n. Thus, a-n =

a_ and b_,, = -b_ for all integers n.) It is well known (see [2], for example) that S(x)

converges to f(z) at each point z where f is continuous and to (f(x+)+f(x-))/2 at each

point x where f is not continuous. For practical purposes, f(x) is often approximated

by its Fourier partial sum Ssv.o(X) defined by

N

(3) SN.o(x)= ao/2 + cos(nx) + bnsin(nz)).
n-----1
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We now define a class of approximations to f which uses the ideas of Pad6 approx-

imants (see, e.g., [1]), except that the approximations are based on the Fourier series

representation of f, rather than on the Taylor series representation of f. Thus, for any

two non-negative integers N and M, we define a family of "Fourier-Padd" approxima-

tions SN,M(X) by

(4)

N

SN,M(X ) = Ao/2 + E,,=,(A,_cos(nx) + B,_ sin(nz))
M °

1 + E_=, (Cmcos(mx)+ Dmsin(mx))

The 2M + 2N + 1 constants {A,_, B,_, Cm, Din} which appear in the definition of SN, M

are determined by the condition that 2M + 2N + 1 of the Fourier coefficients of SN,M

agree with those of f, i.e.

(5) f(1/7r) SN,M(X)COS(jx)dx = aj, 0 < j <_ J
71"

f(6) (1/Tr) SN,M(x)sin(kx)dx = bk, 1 < k < K
7r

where J + K = 2M + 2N.

The idea of constructing Pad_ approximations based on series representations of

functions other than the classical power series representation has been suggested and

studied by several other investigators. For example, Maehly [9] has suggested an ap-

proach to determine the coefficients in rational approximations based on Chebyshev

series, and this approach has since been described in numerical terms, with examples,

by Ralston[10] and by Fike[5]. An account of the basic theory of such approximations

has been given by Cheney [3], who considered the more general case of expansions in

terms of a basis {_j}, whose elements satisfy relations of the form _icPj = _ aljk_k.

Clenshaw and Lord [4] have reviewed rational approximations based on Chebyshev series

and present a well-conditioned method for constructing the elements of a "Chebyshev-

Pad6" table. The general form of a Fourier-Pad6 representation, such as equation (4),

has also been suggested by Cheney. He has proven the existence of a rational trigono-

metric function which "best" approximates a continuous function f, but does not discuss

any detailed algorithms for the computation of the coefficients, rates of convergence of

the approximations, etc.

In the sections 2-4 below we consider the special case of equation (4) when M = 1.

In particular, in sections 2-3 we develop explicit formulas for the coefficients which

appear in the definition of SN,1 in terms of the Fourier coefficients of f. Several results

concerning the behavior and convergence of the approximations {SN,1} are presented in

section 4. In sections 5-6, the results of sections 2-4 are generalized to values of M _> 2.

In section 7 the approximations are applied to a simple initial, boundary-value problem

for the heat equation. Some observations and insights about this class of approximations

are discussed in section 8.



2. Odd functions of x. Sincef can be expressed as the sum of an even function

of x and an odd function of x, it is sufficient to consider separately the cases when f

is either even or odd. Thus, in this section, we consider the case when f is an odd

function of x, while the case of an even function will be discussed in the next section.

For this case, the Fourier series of f can be expressed as (1) with each a,_ = 0, n >_ 0,

and we define a class of Fourier-Padd approximations SN,M(X) of the form

NE,_=l Bn sin(nx)
(7) SN,M(x)= M

1 + Em=l Cm cos(rex)

In this section we examine in detail the case M = 1. The case M >_ 2 will be discussed

in section 5. Thus we consider first approximations of the form

N
_,_=1 Bn sin(nx)

(8) sN,,(x) =
1 + Cx cos(x)

The constants {B1, B2,..., BN, C1} are determined by conditions (6), which for this

case become

N

(9) _dk,jBj=bk, k=l,...,N+l,
j=l

where

/; sin(j x) sin(kx)dk,j=(1/r) . l+Cicos(x) dx=di,k.

To solve (9), we first use the identity

sin(jx)sin(kx) = (1/2)(cos((k- j)x)- cos((k + j)x)

to express the coefficients {dk,j} as

(10) dk,j = IIk-Jl,_ - Ik+j,a, where I,_,, = (l/r) fo '_

Assuming that 0 < C? < 1, we find (see, e.g., [8], p. 113)

cos(, x)
1 + C1 cos(x)dx, n > O.

Using this result in (10) we can write

dk,j = pk-J(1 + p2)(1 + p2 + ... + p2j-2), for k > j.

Using these expressions, (9) can be expressed in matrix-vector form as

(12) _ B2 1 b2
i -I+P 2 "

BN bN+x

3

(11) i,_a = p. 1 +p______i_ V/1 - C_ - 1 2p
l-p2' forn_>0, wherep= Cx orCx- l+p2"



where the (N + 1) × N matrix _ is defined by

1 p p2

p 1 + p2 p(1 + p2)

p2 p(1 +#2) 1 +p2 +p4

pN-1 pN-2(1 + p2)

pN pN-l(1 _}_p2)

pN-1

pN-2(1 + p2)

pN-3(1 + p2 + p4)

1 + p2 + ... + p2N-2

p(1 + p2 + ... + p2N-_)

To solve (12), we first note that if we subtract p times the next to last equation from

the last equation we obtain the relation 0 = (bN+l -- pbN)/(1 + p2), from which we find

(assuming bN _ O)

bN+l 2p 2bNbN+l
, or C 1 - - - .

(13) P - bN 1 + p2 b2N+ b2N+l

In a similar manner, subtracting p times the (k - 1) th equation from the k th equation
we find

b_ - pbk-1 N
Bk = _ pk-J Bj, 1 < k < N.

1 -_- p2 j=k+l -- --

Using this recursive definition of the {Bk}, we can use induction to show that the {Bk}

are given explicitly by

(14) Bk = bk -- p(bk-1 -{-bk+l) C1
l + p2 = bk + -_-(bk-l + bk+l) 1 <_ k <_ N.

(We note that equations (14) also follow from equating (8) to _+1 bj sin(j x), multiply-

ing by 1 + C1 cos(x), and equating coefficients of sin (nx) on each side of the resulting

expression, for 1 _< n _< N.) Thus, the coefficients {Bk} and C1, which appear in

the definition (8) of SN,1, are completely defined in terms of the coefficients {bk} by

equations (13) and (14).

Example 1: As an example of these results, we let f(x) = x/2, for -Tr < x < _r,

and f(x + 2r) = f(x). Then bk = (-1)k+l/k, for k = 1,2, .... Using the formulas

above, we find p = -N/(N + 1) and hence

2N(N + 1) BI=3N(N+I)+2
C1 = 2N(N + 1)+ 1' 4N(N + 1)+ 2'

Ba=(_l)k ( 2N(N_I)_ k_ _1)k=2,3, N._2N(N + 1) + 1 k 2 1 ' ""'

Explicit values for C1 and B1, ..., BN for a few small values of N are shown in Table I.



TABLE I (Example 1: M = 1)

N C1 B1 B2 B3 B4 Bs Ba

1 4/5 4/5

2 12/13 10/13 3/26
3 24/25 19/25 7/50 -2/75
4 40/41 31/41 37/246 -4/123 5/492

5 60/61 46/61 19/122 -13/366 3/244 -3/610

6 84/85 64/85 27/170 -19/510 23/1700 -1/170 7/2550

To illustrate these results, in Figure 1 we have plotted the function f(x) (solid line),

along with the approximations S4,0(x) (dashed line) and $3,1(x) (dotted line). As the

figure illustrates, except possibly in a neighborhood of the discontinuities of f, Sz,1 is

a better approximation to f than is 5'4,o. In particular, the oscillations present in $4,0

away from the singularities of f have been virtually eliminated in $3,1. However, near

the points of discontinuity of f, the Gibbs phenomenon is still present in $3,1, although

its effect appears to be somewhat less than the corresponding phenomena present in

$4,o. We shall discuss this example further in sections 4 and 8.

Before continuing, we briefly note two special cases. First, if bN+l = 0, then p = 0

and hence C1 = 0. Thus Bk = bk, for 1 < k < N, and SN,1 reduces to the Fourier partial

sum SN,O, for this case. Second, suppose bk = 0 when k is even. In this case, we modify

the form of SN,1 and define

(15) sN,,(x) =
N

_"_n=l B2n-1 sin((2n - 1)x)

1 + C2 cos(2x)

Then equations (6) for this case have the same form as (9) with bk replaced by b2k_l

and &,,j = d_,k = Iik_jI - Ik+j-1, from which we find

dkj = pk-j(1 +p2)(1 +p+p2+ ...+p_j-2), for k _>j.
l+p

Using these expressions and the same type of arguments as presented above, we find

for this case (assuming b2N-1 # O)

2p _N+I

(16) C2=-1+p2, P- b2N-1
C2 (b2k-3 + b2k+l), 1 < k < N.

, B2k-1 = b2k-1 + --_ _ _

(Recall that we have defined b_l = -bl.)



3. Even functions of x. When f is an even function of x, its Fourier series has the

form (.1) with each b_ = 0. Then we define the family of Fourier-Pad_ approximations

(17) SN,M(X) = Ao/2 + _,,_N=1A,_cos(nx)
M

1 + Ern=l Cm cos(mx)

In this section we consider the case M = 1. The case M > 2 will be discussed in section

5. Thus we consider approximations of the form

(18) SNa(X) = Ao/2 + z,_N_ A,, cos(nx)
1 + C1 cos(x)

The requirement that the first N -4- 2 Fourier coefficients of SN,1 agree with those of f

leads to a system of equations for the N + 2 unknowns {C1, Ao, ..., AN}, which can be

solved using the techniques of section 2. In particular, we find (assuming aN _ O)

2p aN+l Ak = ak + C1
(19) C1 -- 1 + p2' where p - aN ' -_-(ak-1 -4- ak+l), 0 _< k < g.

In the special case when aN+l : 0, we see that p = 0 and hence Ca : 0. Then each

Ak = ak and SN,I(X) : Sg,o(X) for this case. Also, in the special case that ak = 0 when

k is odd, we redefine

(20) Sua(x) = Ao/2 + _..N= x A_. cos(2nx)
1 + (72 cos(2x)

and find (assuming asN # O)

_. Cs
2p where p - a2N_____+2A2k = ask + --_(a2k-s + ask+s), 0 < k < N.(21)Cs = -1 + ps' a2N '

Example 2: As an application of these results, we let f(x) = 1/_/1 + (_cos(x),

where a s < 1. Here f is analytic for -r < x < r, but develops a sharp, narrow peak

near x = 0 as (_ ---, -1. In Table II we have recorded the Fourier coefficients {a,} of f,

as well as the coefficients {C1, A0, ..., AN} for a few small values of N when _ = -0.95.

Table II (Example 2: a = -0.95, M = 1)

N aN C1 Ao A1 As A3 A4

0 2.94734 -0.68380 2.15059

1 1.16518 -0.85289 1.95357 -0.37012

2 0.65289 -0.89142 1.90867 -0.43948 -0.04495

3 0.40050 -0.90812 1.88922 -0.46953 -0.05802 -0.01235

4 0.25636 -0.91741 1.87839 -0.48626 -0.06529 -0.01657 -0.00452



To illustrate these results, in Figure 2 we have plotted the function f(x) (solid

line), along with the approximations S4,0(z) (dashed line) and $3,1(x) (dotted line). As

the figure illustrates, $3,1 is a noticeably better approximation to f than is 5'4,0. In

particular, the oscillations present in $4,o have been virtually eliminated in 5'3,1. We

shall discuss this example further in sections 4 and 8.

4. Analysis of the Case M = 1. We now prove certain results which express

the asymptotic behavior of the coefficients C1 and {Ak} or {Bk} as N ---* oc, and which

also allow us to make some statements concerning the convergence of the family of

approximations {SN,1}, as N ---* oo.

It is well known (see [2], for example) that if f has q continuous derivatives on

-r < x _< _- and the derivative of f of order q + 1 is piece-wise continuous, then the

Fourier coefficients of f are O(1/k q+2) as k _ c_. For such a function, we now show

that the coefficients in SNa decay as k ---+cx) at a faster rate than the Fourier coefficients

on which they are based.

THEOREM 1. Let f be an odd, 2r-periodic, piece-wise smooth function and let its

Fourier coefficients {bk} satisfy the condition that bk = O(1/kP), as k _ oo, where p is

a real, positive number. Then [C1[ -- 1 + O(1/N _) and Bk = O(1/k v+2) as k,g --_ oo.

More precisely, let b,/3, and "7 be constants 5ndependent of k). Then, ifbk = (b/kP)(1 +

_/k + 7/k 2 + O(1/U)), as k _ c_, it follows that

__() 0 1p2 bp 1 (1 + p(1 (k/N)2)) + (k--_-_),C, = -1 + _ + O(1/N3), Bk = 2

as k, N ---* oo. If f is an even, 2r-periodic, piece-wise smooth function, then these results

hold with bk replaced by ak and Bk replaced by Ak.

Proof: We shall outline the proof only for the case when f is an odd, 2r-periodic,

piece-wise smooth function, since the proof for the case when f is an even function

follows the same line of reasoning. Using the assumed form of the asymptotic behavior

of the coefficients {bk}, we note first that we can write

(22)

bN+l = (b/(N + 1)P)(1 + _/(N + 1) + 7/(N + 1) 2 +O(1/(N + 1)3))

= (b/NP)(1 + e)-P(X +/3e/(1 + e) + -),e2/(1 + e) 2 + O(1/N3))

= (b/NP)(1 +(t3-p)e+('T-fl(p+ 1)+ p(p+ 1)/2)e _ +0(1/N3)),

where we have defined _ = 1/N. Then, using this expression and the definition of p in

(13), we can write

(23)
bN+l p

P- -1- +
p + p2 _ 2/_

2N 2
+ O(1/N3), as N -+ oo,

and hence

C1 = - 2p
1 +p2

p2

- -1 + _ + O(1/N3), as N ---* c_,

as stated in the Theorem.



In a similar manner, for large values of k we can use the assumed form of the

coefficients {b,} to write

bk+, = (bl(k+ 1)p)(1 + t3/(k-l- 1)+71(k± 1) 2 + O(l/ka))

= (blk")(1 + e)-'(1 + ¢_e/(1 + e) + -re2/(1 + e)2 + O(llk3))
= (b/kP)(1 + 03 q: p)e + (7 :F/3(p + 1) + p(p + 1)/2)e s + O(1/ka)),

where we have now defined e = 1/k. Using these expressions, along with an analogous

expression for bk and the asymptotic expression above for C1, in the definition of Bk in

(14), we find for large values of k and N (with k _< N)

Bk = bk + (C1/2)(bk-1 + bk+i)

= (b/kp){1 +/_e + _e s + O(e 3)
+(1/2)(-1 + p2/(2N_) + 0(11N3))(2 + 2,3e+ (2,,/+ p + p2)e2 + O(e3))}

= -(bpl2)(1/kP+s)(1 + p(1 -(k/N)2)) + O(l/kP+a),

which completes our proof.

Thus, Theorem 1 establishes that the coefficients {Bn} in the approximations SN,1

decay to zero more rapidly (by a factor of k -2) than the coefficients in the partial sum

SN,O on which they are based.

Before continuing, we remark that results very similar to those stated in Theorem

1 hold if the coefficients {bk} of f have the same asymptotic form as that stated in the

theorem, except for a multiplicative factor of (-1) k, i.e., if bk = (blkP)(-1)k(1 + 131k +

"flk 2 + O(llk3)), as k ---+c¢. In this case, it is easy to show that the Fourier coefficients

{51,} of ] - f(z + _r) are related to those of f by bk = (--1)kbk • It then follows that

the coefficients {bk} satisfy the conditions of the theorem and hence the corresponding

coefficients 6'x and {/3_} have the asymptotic form indicated in the theorem. In partic-

ular, it follows from equations (13) and (14) that Cx = -C_ and Bk = (--1)k/}k. Thus,

the asymptotic behavior of C1 is the negative of that indicated for C1 in the theorem,

while the asymptotic form of Bk is (-1) k times the form indicated for B_.

To illustrate these results, in Figure 3 we have used the coefficients {Bk} from

Example 1 and have plotted k3iBkl as a function of 1/k, for 3 < N < 20. The figure

clearly illustrates the O(1/k 3) decay of the coefficients {Bk}, and also indicates an

interesting asymptotic behavior of BN-q, for a fixed value of q, as N _ c¢.

If the function f is analytic for -Tr < x < 7r, then (see, e.g., [2]) the Fourier

coefficients of f decay exponentially as k _ oc. That is, there exists a constant 8, with

0 < i0i < 1, such that {ak, bk} are O(0 k) as k ---+ c¢. The next theorem shows that,

again for this case, the coefficients {Bk} decay to zero more rapidly than the Fourier

coefficients on which they are based.

THEOREM 2. Let f be an odd, analytic, 2r-periodic function and let its Fourier

coefficients { bk } satisfy the condition that bk = O(lOI k/kp), as k ---+oo, where 0 < [01 < 1,

and p is a real number. Then Ca = 28/(1 + 0 s) + O(IlN) and Bk = o(IOlUkp+l) as

k,N ---+ oc. More precisely, let b, /3, and 7 be constants (independent of k). Then, if

bk = (bOk/kP)(1 + fl/k + "l/k s + O(1/ka)), as k ---+c_, it follows that

28 { p (1-02) (p-2/3)(l-O4)+p2(l-602+O 4) }C,=-17-0 a 1-_- ]-T_ + 2(1+02)2N _ +O(1/Na) '

8



Bk--
bO k

kp+l {1_o 1[ 1_o p_(1-k/N)--_ 1_0 2(2_p+(2_3+p)(I +k/N))(1-k/N)

p2 02) 2 04)) (1 k/N) P ]} Ok2(1 +02) 2 ((1 + -(k/N)(1-602 + - 1 +02 + O( k--(_+_)'

as k, N _ o0. If f is an even, analytic, 2r-periodic function, then these results hold

with bk replaced by ak and B_ replaced by Ak.

Proof: As in the proof of Theorem 1, we shall outline the proof only for the case

when f is an odd function, since the proof for the case when f is an even function

follows the same line of reasoning. Using the assumed form of the asymptotic behavior

of the coefficients {bk}, we note first that bN+l has the asymptotic form indicated on

the right side of equation (22), multiplied by 0 N+I. Then, using this expression in the

definition of p in (13), we find that p has the asymptotic form indicated by the right

side of (23) multiplied by O. Using these expressions in the definition of C1 in (13) we

find

C1 - 2p - -20
1 +p2

1 - p/N + (p + p2 _ 2/3)/(2N 2) + O(1/N 3)

1 + 02 (1 - p/N + (p + p2 _ 2_3)/(2N 2) + 0(1/N3)) 2

- 1+021-_ +0 _ + 2(1+02)2N 2 +O(1/NZ) '

aS N---_ oo.

In a similar manner, using the assumed asymptotic form of the coefficients {bk} we

can write

bk+l = (bOk+' /kV)(1 + ([3 q: p)e + ('7 T- t3(p + 1) + p(p + 1)/2)e _ + O(1/k3)),

as k _ c_, where e = 1/k. Thus, for large values of both k and N we have

Bk = bk + (C1/2)(bk-1 + bk+x)

0% { 1=--_- 1+/3e+ 7e 2 1+0 _ + (p-2_)(12( 04)+p2(1-6021+ 02)2N 2 +04)]

• [1 + (/3 + p)e + (3' +/3(p + 1) + p(p + 1)/2)e 2

+02 (1 + (/3- p)e + (7-/3(p+ 1)+ p(p+ 1)/2)e2)]} + O(Ok/k v+3)

,0,,, 0, ,I 10,kp+' _Pl--_(1-k/N)-k 1 +_(2/3p + (2fl + p)(1 +k/N))(1-k/N)

9



p2 02) p ]} 0k2(1+02)5((1+ -(k/N)(1-605 +O')) (1-k/N) 1+05

as k --- o_. This completes our proof.

We note that the rate at which the coefficients {Bk} decay to zero changes slightly

as k _ N. In particular, for k < N, B, = O(0k(1 - 02)(1 - k/N)/k p+I, but BN =

o(ON/Np+5), as k, N _ oo. Thus, while each Bk decays to zero faster than the corre-

sponding Fourier coefficient bk, we see that Bk_ decays somewhat faster than Bk_, when

k5 < kl < N.

To illustrate these results, in Figure 4 we have used the coefficients {Ak} from

Example 2 and have plotted k2tAkl/lakl as a function of 1/k, for 3 < N < 20. The

figure clearly illustrates that the coefficients {Ak} decay at a faster rate (asymptotically

by a factor of k -2) than the coefficients {ak}, and also indicates, as in Example 1, an

interesting asymptotic behavior of AN-q, for a fixed value of q, as N --+ _.

Finally, we use the results of the previous two theorems to show the manner in

which the approximations {SN, I(x)} converge to the original function f(x).

THEOREM 3. Let f be an odd, 2_r-periodic, piece-wise smooth function and let

its Fourier coefficients {bk} satisfy the conditions of Theorem 1. Then the sequence of

approximations {SN,_(x)} converges to (f(x +) + f(x-))/2, as N _ _, for all -rr <

x < 7r. Moreover, the sequence {SN,I(X)} converges like a Fourier series whose terms

are O(1/NP+2). These results also hold if f is an even, 2r-periodic, piece-wise smooth

function, if the Fourier coefficients {ak} off satisfy the conditions stated above with bk

replaced by ak.

If f is an odd, analytic, 2rr-periodic function and its Fourier coefficients satisfy the

conditions of Theorem 2, then the sequence of approximations {SN,I(x)} converges to

f(z), as N _ ¢x_, for all-r <_ x <_ 7r. Moreover, the sequence {SNA(X)} converges like

a Fourier series whose terms are O(ON/Np+I). These results also hold if f is an even,

analytic, 2r-periodic function, if the Fourier coefficients {aj,} off satisfy the conditions

stated above with bk replaced by ak.

Proof. As in the proofs of the previous theorems, we shall outline only the proof

for the case when f is an odd, 2rr-periodic, piece-wise smooth function.

To begin, we note that, since f is an odd function, we can restrict our attention to

values of x in the open interval 0 < z < r (since SN._(O) = (f(0 +) + f(0-))/2 = 0 =

SN,_(r) = (f(Tr +) + f(r-))/2, and hence convergence is assured at x = 0 and x = r in

a trivial way). Consequently, we let x be any fixed number in the interval 0 < x < _r

and let e > 0 be any fixed positive number. We then define

(24) EN,I(x) = (f(x +) + f(x-))/2 -- SN,I(x) = E(_)(x) + E(_)(x),

(25) E(_)(x) = (f(x +) + f(x-))/2- SN,o(X), E(_)(x) = SN,o(X)- Sg,l(X).

By the hypotheses of the theorem concerning f, the Fourier partial sums SN,o(X)

converge to (f(x +) + f(x-))/2, as g _ c¢. Hence, there exists a positive integer
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N1 = N,(x, e) such that

(26) E(_)(x) = (f(x +) + f(x-))/2- SN,o(X) < 2' for all N > N1.

Also, using the definitions of SN,O and SN,1, we can write

N

E(_)(x) = SN,o(X)- SN, I(x) = __. b,,sin(nx)-

N
_,_=1 B,_ sin(nx)

,,=1 1 + 61 cos(x)

(27)
C1 bNsin((N + 1)x) - bN+l sin(Nx)

2 1 + C, cos(x)

Using the assumed asymptotic form of the coefficients {b,_}, there exists a positive

integer N2 = N2(x,e) > (4 Ibl/(e(1 - cos(x))) 1/p such that Ib.I < 21bl/Nv and Cl > -1

for all N > N2. Then, using equation (27), we can write

E(_)(x) = ISN,o(X)- SN,,(x)I <
IC,l IbNI+ IbN+xl

2 1 - cos(x)

41al
(28) < 2(1- cos(x))N_ < 2' for all N > N2.

Using the bounds (26) and (28), from equation (25) we find

(29) (f(x +) + f(x-))/2- SN,I(x) < E(_)(x) + E(_)(x) < -_ + -_ = e,

for all N > N3 = Max(Na, N2). Thus, the sequence of approximations {SN,,} converges

to (f(x +) + f(x-))/2 as N _ cx_.

To demonstrate the manner in which these approximations converge, we write SN,,

as

N

(30) SN,I = _ rk, where r_ = Sa,1 and rk = Sk,,(x) - Sk_,,_(x), 2 < k < N,
k=l

and then examine the quantities rk for large values of k. Using the definition (8), we
can write

(31) rk(x) = _=_ B_k)sin(nx)
1 + C_ k) cos(x)

k-I B(_-l)sin(nx)

1 + C_ k-i)cos(x)

where we have placed a superscript on the coefficients B,_ and Cx, to remind us of the

dependence of these quantities on the parameter k. Combining the terms on the right

side of equation (31) and using various trigonometric identities, we can write

gum

(32) rk(x) = -Den'

11



where

gum
sin((k2- 1)x)C}k) {bk C}k-')" }-3t_ Ti, Uk_ 1 .._ bk+,)

C} k-l) C} k) Isin(kx_______))bk + _bk-1 + --ff--b_+l)/+ 2 2

and

(33)

c}') }4sin((k + l)x) c}k-')2 bk + T(bk_l -_- bk+l) ,

Den = (1 + C} k) cos(x))(1 + C} k-') cos(x)).

Using the asymptotic form of the coefficients B(k) and C} k) from Theorem 1, we find

Num- bp 1 (l_cos(x))sin(kx)+O(1/kp+3),
2 kp+2

(34)
p2

Den = (1 - cos(x)) 2 + _-_(1 - cos(x)) cos(x) + O(1/k*), as k _ c¢.

Using the estimates (34) in (32), we find

(35) rk =
bp 1 sin(kx)

2 1 - cos(x) kv+2
+ O(1/kp+3), as k ---* _.

This completes the proof of our theorem.

To illustrate some of these results, in Figure 5 we have plotted log IEN,11/log tNI
for Example 1, as a function of 1/log INI, for 3 < N < 50, with x = _r/2. We note that,

if EN,1 ~ aN-P, as N --* c¢, then log IEN,11/log INI ~ -p + log lal/log INI, as N _ c¢.

Thus, the plot should be approximately linear for small values of 1/log INI, with an

intercept of -p. The value of p = 3, as predicted by Theorem 3, is clearly suggested by

the figure. In this figure we have also plotted the corresponding error for the Fourier

partial sums, corresponding to M = 0. For M = 0, the figure suggests a value of p = 1.

Thus, the improvement in the rate of convergence suggested by the figure is consistent

with the increase predicted by Theorem 3, i.e., an increase in p of 2.

5. Case M > 2. We now generalize the results of the previous sections. In par-

ticular, when f is an odd function of x, we consider the family of approximations

(36) SN,M(X) =

N
E==I B= sin(nx)

M
1 A- Em=l Cm cos(rex)'
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where M is any positive integer. The constants {B,_, Cm} are determined by the con-

ditions (6), which for this case become

N

(37) _ dk,_B_= bk,
j=l

k = 1,...,N + M,

where

(38) sin(jx)sin(kx) = dj,k = IIk-jI,M -- Ik+j,M,
dkd = (1/_r) . 1 + EmM__,Cm cos(mx) dx

fo'_ c°s(nX)cos(mx)dx,(39) I.,M = (1/_r) 1+ Y_mM_-ICm _2__O.

To evaluate In,M, we denote the denominator of the integrand by P and express cos(rex)

as a polynomial of degree m in cos(x). Then P becomes a polynomial of degree M in

cos(x) and, assuming CM _ O, we can write

(40)

M M

P = 1 + _ Cm cos(rex) = 2M-1CM H(COS(X) + zi),
m=l i=1

and hence

1 1 M O/i M

-- i_ 1 , OZi = _ (Zk- Zi) -1.(41) 1 q- _-_mM__l Cm cos(mx) 2M-1CM .= COS(X)-b Zi k=l,k¢i

Here {-zi} are the roots of the polynomial P, when P is regarded as a polynomial in the

variable z = cos(x), and we have assumed that the {z_} are all distinct. Substituting

(41) into (39)and using (11), we can write

2 M p_+l

(42) I,_,M -- CM _-" fl' 2'i=1 1 -- Pi

M PiPk
II (Pk - pi)(1 - PiPk)' Pl = - 1 - zi.

k=l,kCi

Using this result in (38) we find

2 M j-1

PiPi E 21-- Pi, k>j.(43) dk,j CM Z "_ k-j+l
i----1 1=0

To solve equations (37), we first define the quantities

(44) So = 1, sm= (-1) m Z pfi " "" pi,.,, , 1 _ m _ M.

1<_Q <i2 < ...<ira <M

13



(We note that sm is just the coefficient of pM-m in the polynomial 1-IM_(p -- Pi).) We

then denote the k th equation in (37) by eq(k) and form the linear combinations

M

(45) lc(k)- y_ s,,,eq(k-m), k= N + M,N + M- 1,...,1.
rn=0

Here we define eq(O) to be the trivial equation 0 = 0, and eq(n) = -eq(-n), for n < 0.

For k = N + M, N + M - 1, ..., N + 1, we find that the left side of each lc(k) vanishes.

This leads to the relations

M

(46) Y_ SmbN+M+l-p-m = --bN+M+I-v, P = 1, ..., M,
rrt= l

which are a system of M linear equations for the M quantities Sl,...,SM. We shall

assume that the determinant of the matrix of coefficients in (46) is nonzero so that

these equations can be solved uniquely for sl, ..., SM. Once these quantities have been

determined, we can use equations (44) and (42) to express each Sm in terms of the

quantities zi, and then use equation (41) to express each of the coefficients Cm in terms

of the zi. We write out these equations for a few small values of M and then use induction

to show that the coefficients {Cm} can be expressed explicitly in terms of the known

quantities {si} as

2 M-m M

(47) Cm D _ sksm+k, l_<m_<M, D=y_sj.
k=0 j=0

To determine the coefficients {Bk}, for k = N, N - 1, ..., 1, we solve lc(k) for Bk

and then use induction to show that the coefficients {Bk} are given explicitly by

1 M

(48) Bk = bk + -_ _ C,,,(bk+m + bk-m), 1 < k _< N.
m=l

(Equations (48) also follow from equating (36) to _N+M bjsin(jx), multiplying by 1 +
M

_m=_ Cm cos(mz), and equating coefficients of sin (nz) on each side of the resulting

expression, for 1 < n < g.) Thus, the coefficients {Cm} and {Bn} are completely

determined by equations (48), (47), and (46).

Example 3: As an application of these results, we consider the odd, 2rr-periodic

function f defined by f(z) = ez(_r - x)/(d + (x - 6)2(x - ,r + 6)2)1/5 for 0 _< x _< ,r,

where e and 6 are real, positive parameters. For this function, we find bk = 0 when k is

even and hence SN,O = EN=_ b_k-_ sin((2k - 1)x). Then, for M = 2, we define

N

E B2k-, sin((2k - 1)x)
k=l

SN.2 = 1 + C, cos(2x) + C2 cos(4x)'

where the coefficients {B2k-,} and {Cm} are defined by equations (46)-(48), with bj

replaced by b2j-1. Explicit values for {C1, C2, Ba, ..., B2N-1} are shown for a few small

values of N in Table Ill when e = 0.1 and 6 = 0.5.

14



Table III (M = 2)

N b2N_l C1 62 B1 133 B5 B7 B9

1 0.41814 -.99477 0.29067 0.43574

2 0.31809 -1.3981 0.46568 0.43655 -.16521

3 0.09684 -1.3559 0.54610 0.42554 -.17564 0.02412

4 -.11150 -1.3462 0.58487 0.42077 -.18343 0.02989 0.00716

5 -.17153 -1.3539 0.59107 0.42047 -.18703 0.02987 0.00817 0.00234

In Figure 6, we have plotted $6,0, $5,1 (using equation (15)), and $4,2, as well as f, for

0 _< x _< r. From the figure it is clear that $4,2 is a better approximation to f than

either $5,1 or $6,0. In fact, for this example, $5,1 and $6,0 lie close to each other and

are each a "poor" approximation to f. We shall comment further on this example in

section 8.

If f is an even function of x, then results very similar to those above hold with each

bk replaced by ak. In particular, for approximations of the form

N a, cos(nx)Ao/2 + F_,,_=I
SN,.(x) = M1 + E,-,,=IC,,,cos(rex)

we find

1 M

Ak = ak + -_ Y_ Cm(ak+m + ak-m), 0 <_ k <_ N,
m=l

2 M-m

Cm = -_ Y_ sksm+k, 1 <_ m <_ M,
k=0

where the {sin} are now determined from the equations

M

M

o:Es ,
j=0

(49) Y_ SmaN+M+l-p-m = --aN+M+l-p, P-- 1, ..., M.
m=l

6. Analysis of the ease M _> 2. In this section, we prove some results analogous

to those proved in section 4 for the case M = 1.

THEOREM 4. Let f be an odd, 27r-periodic, piece-wise smooth function and let its

Fourier coefficients {bk} satisfy the condition that bk = O(1/kP), as k ---* c_, where p is a

real, positive number. Then, for any positive integer M > 1, C_ = Cm,M +O(1/N2), for

1 <_ m <_ M, where Cm,M are certain constants independent of N, and Bk = O(1/kp+2M),

as k, N _ oz. More precisely, let b,/3, and "y be constants (independent of k). Then if

bk = (b/kp)(1 + 9/k + + 0(1/k3)), as k --,

(--x)m(MM-m) {1-- m2(p+ M-1)(p+ 2(M-1))}
Cm = (2MM__la) 2(2M - 1)N 2 + O(1/N3)'
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1,, )Bk = 2(-MM--_ll_k--_M (-1)' J=,I-I(P+ 2M- j - i)(k/N) 2'

+O(1/kP+2M+I) ,

.,as k, N _ oo. Here =- j!(n-i)! is the usual binomial coefficient. If f is an even,

27r-periodic, piece-wise smooth function, then these results hold with bk replaced by ak

and Bk replaced by Ak.

Proof: As in the proof of Theorems 1-3, we shall only outline the proof for the case

when f is an odd, 27r-periodic, piece-wise smooth function.

To see that the coefficients {Cm} have the stated form as N _ co, we first use the

assumed form of the asymptotic form of the coefficients {bk} to write

(50) bN+j = (b/(N + j)P)(1 + fl/(N + j)+'7/(N + j)2 + O(1/Na))

= beP(1 +(fl-jp)e+(_/-jfl(p+ 1)+j2p(p+ 1)/2)e 2 + O(eZ)),

where we have defined e = 1/N. Next, we examine the behavior of the quantities {sin}

as N _ c_. Using the linear equations (46), we solve for {_r_} explicitly in terms of the

coefficients {bk} for a few small values of M (see the Appendix). We then insert the

expansions (50) into these explicit expressions for the {sin} and expand the resulting

expressions for small values of e. In this way we obtain an expansion for each sm which

is valid as e ---* 0, i.e. as N _ cx_. We then use induction to show that these expressions,

for any positive integer M, can be written as

1Sr, = (-1) m -M m-1 N +

for m = 1, 2, ..., M, as N --. cx). Inserting equations (51) into (47) and expanding the

resulting expressions for large values of N, we find that each coefficient Cm has the

asymptotic form indicated in the statement of the theorem.

In a similar manner, using the expressions (50) with N replaced by k, along with

the asymptotic form of the {Cm}, in equations (48), we find that the coefficients {Bk}

have the asymptotic form indicated in the statement of the theorem, as both k, N --. oc.

This completes the proof of our theorem.

To illustrate these results, in Figure 7 we have plotted log IBkl/log k vs. 1/log k

for Example 1 with M = 1,2,3, and 4, for N = 20. The figure clearly illustrates how

much more rapidly tile coefficients Bk decay to zero (especially with increasing values

of M) than the coefficients bk, which decay only like 1/k.

The results of Theorems 2 and 3 generalize to the case when M _> 2 in a straightfor-

ward manner. Using the results of Theorem 4, the proofs of the following two theorems
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follow closely the proofs of Theorems 2 and 3, respectively, and, hence, we state them

without proof.

THEOREM 5. Let f be an odd, analytic, 2zc-periodic function and let its Fourier

coefficients {bk} satisfy the condition that bk = (bOk/kP)(1 + fl/k + 7/k 2 + 0(1/k3)), as

k _ ec, where b,/3, and 7 are constants (independent olk), p is a real positive number,

and 0 < [01 < 1. Then

Cm = 2(-1)m0 m k m+k + O(1/N), m = 1,...,M,

and Bk = O(]0]k(1 --02)(1 -- k/N)/k p+M) + O(IOIk/N"+M+I), as k,N _ oc. 11f is an

even, analytic, 27r-periodic function, then these results hold with bk replaced by ak and

Bk replaced by Ak.

THEOREM 6. Let f be an odd, 27r-periodic, piece-wise smooth function and let

its Fourier coefficients {bk} satisfy the conditions of Theorem 1. Then the sequence of

approximations {SN,M(X)} converges to (f(x +) + f(x-))/2, as N _ 0% for all -It <_

x < 7c. Moreover, the sequence {SN,M(X)} converges like a Fourier series whose terms

are O(1/Np+2M). These results also hold if f is an even, 27r-periodic, piece-wise smooth

function, if the Fourier coefficients {ak} of f satisfy the conditions stated above with bk

replaced by ak.

If f is an odd, analytic, 2w-periodic function and its Fourier coefficients satisfy the

conditions of Theorem 2, then the sequence of approximations {SN,M(X) } converges to

f(x). as N  .1or alt- <_• <_ Moreover. the sequence convergeslike
a Fourier series whose terms are o(ON/NP+M). These results also hold if f is an even,

analytic, 27r-periodic function, if the Fourier coefficients {ak} off satisfy the conditions

stated above with bk replaced by ak.

To illustrate Theorem 6, in Figure 5 we have also plotted log [EN,M]/log IN I for

Example 1, with M = 2 and 3, as a function of 1/loglN ], for 3 < N < 50, with

x = 7r/2. Here EN,M(X) -- (f(x + ) + f(X- ))/2 -- SN,M(X). Using the ideas discussed after

Theorem 3, the results presented in Figure 5 are consistent with the convergence rates

of p = 5 (for M = 2) and p = 7 (M = 3), as predicted by Theorem 6 for the function

considered in Example 1.

7. Application. Applications of the results presented above to several classes of

problems usually solved by Fourier series alone will be presented and discussed else-

where. In this section, we present an application to a simple heat conduction problem

to illustrate some of the potential of the method to improve the accuracy of approximate

solutions obtained by partial sums of Fourier series.

We consider the problem of determining the transient behavior of the temperature

u(x, t) which satisfies the conditions

(52) ut=u_, for0<x<zr andt >0,

with

u(0, t) = 0 = u(7_, t), for all t > 0, and u(x,0) = x/2, for 0 < x < 7v.
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(In equation (52), the subscripts denotepartial differentiation.) Using separation of
variables,the solution is found in a straightforward mannerto be

N (__1)n+1
(53) u(x,t) = lim u(N'O)(x,t), where u(N'°)(x,t) _ e -"_t sin(nx).

N--*c_ 12
n-----I

This solution obviously has a discontinuity at x = r when t = 0.

Using the formulas of section 2, we define a new class of approximate solutions

{u (N'I)} by

(54) I_(N'I)(x, t) -- y']''N1B,,(t)sin(nx)
1 + Cl(t)cos(x) '

where the coefficients Bn(t) and Ca(t) are defined by equations (13) and (14) with bk

replaced by (--1)k+le-k2*/k. Thus, we find

c,(t) = 2N(N + 1)e-(2N+a) t C1

(N + 1) 2 + N2e-(4N+2) _' Ba = e -t - --e-4t'4

(55) Bk(t) = (--1)k+l { e-k=_ CI ( e-(k-1)2t e-(k+l)2t _ }k 2 k k-f + -k-+l ] ,2<_k<U.

In Figure 8 we have plotted u (4,°) (dashed line) and u (3,1) (dotted line), along with the

exact solution u (_,°) (solid line) for t = 0.01 and t = 0.05. As the figure illustrates, u (3,1)

is consistently a better approximation than u (4,°) to the exact solution, and the quality

of this approximation improves as t becomes larger. The corresponding comparison at

t = 0 is the same as shown in Figure 1 for 0 < x < 7r.

8. Conclusions and Discussion. We now make a few observations about the

family of Fourier-Pad_ approximations discussed above, and also comment on several

of their properties that need further investigation.

First, we note that, using only the "information" contained in the first few Fourier

coefficients of a function f, the functions SN,M appear to provide new approximations

to f which are consistently "better" than the Fourier partial sums Sg,o on which they

are based. The sense in which these approximations are "better" can be interpreted in

at least three different ways. First, Theorems 3 and 6 show that these approximations

converge point-wise to (f(x +) + f(x-))/2 at a faster rate than the original sequence

{Sg,0}, as the parameter N increases. Secondly, although the Gibbs phenomena is

still present in the family {SN,M}, the amplitude of the oscillations near a point of

discontinuity of f appears to be mitigated, when compared with the oscillations present

in SN,o. Finally, oscillations in SN,o, which lie outside a neighborhood of a point of

discontinuity of f (or outside a region of large curvature of f), are noticeably damped

in SN,M, for M > 1, especially as N increases. These last two interpretations are

illustrated in Examples 1 and 2.

The fact that explicit expressions were derived for the coefficients An, B,, and Cm,

which appear in the definition of SN,M, should be emphasized. (From a practical point
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of view, it should be noted that it might be possible to develop an efficient, recursive

algorithm, similar to algorithms presented by Baker [1], to compute these coefficients,

since the equations which ultimately determine these quantities are recursive in nature.

See, especially, equations (46)-(48), as well as the Appendix.) These explicit expressions

not only facilitate the proofs of the stated theorems, but also illustrate some of the

potential use of these approximations to construct approximate solutions to problems

involving differential equations, especially partial differential equations. In particular,

the Fourier coefficients {an, b_} may be functions of one or more "other" variables, such

as t, as in the example of section 7. The application of the basic ideas presented here to

problems involving several different classes of partial differential equations is currently

under investigation and will be reported elsewhere.

As far as the mathematical properties of the family {SN,M} are concerned, only the

most elementary properties have been investigated here. Many other questions, which

are of both theoretical and practical importance, should be addressed. For example, for

a fixed value of N+M, which approximation SN,M is "best"? In Figure 9 we have plotted

5'6-q,q, for q = 0,1,...,5 for Example 1. In this case, the figure seems to suggest that

perhaps 5'3,3 is "best" in some appropriate integral norm, although the improvement of

the quality of the approximation of $3,3, say, over SS,l is not dramatic. For this example,

the function has essentially only one point of discontinuity (at x = r) and hence SN,1

appears to provide a "good" approximation. By contrast, the function considered in

Example 3 has essentially two point_ of large curvature (near x = 6 and x = 7r - 6).

For this example, SN,1 provided a poor approximation to f, while SN,_ yields a much

improved approximation. More generally, the "best" SN,M will undoubtedly depend on

both the general "shape" and smoothness properties of the function f, as well as on

the particular norm used.

From a practical point of view, a related issue concerns how best to represent a

function with a discontinuity interior to [-r, _']. For example, consider the odd, piece-

wise continuous, 2_r-periodic function f defined by f(x) = 7rx/2, for -_r/2 < x _< 7r/2,

and f(x) = 0, otherwise, in [-Tr,r]. The Fourier coefficients {bn} of f are given by

b,_ = (-1)(n-x)/2/n 2, if n is odd, and b, = Qr/(2n))(-1) ('+2)/2, if n is even. The Fourier

partial sum S10,0 associated with f is plotted in Figure 10. To approximate f by one of

the functions SN,M, one possibility is to use the formulas above "blindly" and construct

an approximation, say Sga, in a straightforward manner. This approximation is also

plotted in Figure 10. As the figure clearly illustrates, neither Slo,1 nor $9,1 is a "good"

approximation to f. However, we now observe that we can decompose $2N+2,0 into the

sum of two other partial sums, i.e.

c(1) ¢(2) where
$2N+2,0 _- 'JN+I,0 -iv 'JN+I,O,

S(') - sin(x)- 1 sin(3x) + 1 sin(5x) -
N+I,O -- 9 _ ""'

S(2) r sin(2x) - sin(4x) +
N+I,O _
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Wecannowapply our formulas to each of these sums, separately, and construct two new

approximations S(_,)1 and S(_,)1. We then use S(_,)1 + S(_,) as a new approximation to f.

The approximation S0)4,1+ _4,1¢(2)is also shown in Figure 10 and is clearly an improvement

over either $10,1 or 5'9,1 •

This example also serves to illustrate a possible advantage of the more general form

of SN,M defined in equation (4). In particular, the only approximations that have been

investigated here correspond to setting each Dm= 0 in equation (4). More generally, the

inclusion of both sine and cosine terms in the denominator of SN,M allows the possibility

of "shifting" the location of an approximate "pole" of SN,M from either x = 0 or x = =t=a"

to an arbitrary point interior to the interval (-_r, Tr). For example, when M = 1, the

denominator of SN, I can be expressed as 1 + C1 cos(x) + O1 sin(x) = 1 + C'_ cos(x - 6).

Thus, if C1 _ -1, for example, then the denominator will be small when x is near _i

and, hence, SN,1 could potentially better simulate a function which has a singularity

(or a "near" singularity) at x = 6.

We also note that, while Theorems 3 and 6 establish the convergence of the sequence

of approximations {SN,M} for a fixed value of M as N _ oc, the Gibbs phenomena

has not been eliminated, although its effects seem to be mitigated. Thus, the rate of

convergence of this sequence in regions near a point of discontinuity of f needs further

study. For example, in the proof of Theorem 3, equation (35) establishes that, for any

fixed value of x, with -Tr < x < 7r, the terms rk are O(1/k p+2) as k ---, o¢. However, the

"practical" rate of convergence of the series is mitigated somewhat, especially near x =

0, by the presence of the factor (1 - cos(x)) in the denominator of the expression for rk.

This factor, in combination with the terms sin(kx) in the numerator, also foreshadows

the Gibbs phenomena that does remain. However, the fact that an explicit form for these

terms is available should assist in the investigation of ways to improve convergence in

these regions. This observation, as well as the other observations, questions, and several

related issues raised here, are the subject of some current investigations and the results

of these investigations will be reported elsewhere.
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A. Appendix. In this appendix we present some explicit expressions for the quan-

tities {sin} defined in section 5 in terms of the coefficients {bk} by equations (46) and

(49) when f is an odd function of x. Analogous expressions hold when f is an even

function of x, with each bk replaced by ak. For M = 1,2, and 3, these quantities are

given by

M = 1 : sa = --bN+l/bN;

M=2: 81 _--_-
bN+lbN -- bN+2bN-1

bN+lbN-1 -- b_

bNbN+2 -- b_+l.

, s2 = bN+lbN-1 -- b_'

M=3:

_ _ b2bN+l(b2N bN-lbN+a) + bN+2(bN+lbN-2 bN-lbN) + bN+3( N-1 -- bNbN-2)

Sl = det '

bN+l(bN+2bN-1 -- bNbN+l) Jr" bN+2(b2N -- bN+2bN-2) q- bN+3(bN+lbN-2 -- bNbN-1)

s2 = det '

bN+,(b2N+l -- bNbN+2) + bN+2(bN+2bN-1 -- bgbN+l) + bN+a(b_ - bN+,bg-,)
s3 = det '

b2 bgbN+2) + bN-l(--bN-,bN+2 + 2bNbN+l) + bN(-b_).det = bN-2(-- N+l +
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Figure 1: A plot of the function f(x) (solid line), the approximations S4,0(x)

(dashed line) and $3,1 (x) (dotted line) for Example 1. Note that the oscillations present

in $4,0 away from the singularities of f have been virtually eliminated in $3,1.
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Figure 2: A plot of the function f(x) (solid line), the approximations 5"4,0(x)

(dashed line) and Sz,l(z) (dotted line) for Example 2. Note that the oscillations present

in $4,0 away from the regions of large curvature of f have essentially been eliminated

in $3,1 •
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Figure 3: A plot of k3lBk[ (circles) for Example 1 as a function of 1/k, for 2 _< k <

N, with 3 _< N _< 20. The O(1/k 3) decay of the coefficients {Bk} is clearly illustrated,

as is an interesting asymptotic behavior of BN-q, for a fixed value of q, as N ---, o0.
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Figure 4: A plot of k lAkl/lakl (circles) for Example 2 as a function of 1/k, for

2 _< k < N, with 3 < N < 20. The figure illustrates that the coefficients {Ak} decay

faster than the coefficients {ak}, asymptotically by a factor of k -2, as predicted by

Theorem 2. As in Example 1, an interesting asymptotic behavior of AN-q, as N _ cx)

for a fixed value of q, is also predicted.
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Figure 5: A plot of log IEN,MI/log INI for Example 1 as a function of 1/log INI for

3 < N < 50, at x = _r/2, for M = 0,1,2, and 3. Here EN,M(X) -- (f(x +) + f(x-))/2 -

SN,M(X). We note that an intercept of 2M + 1, as predicted by Theorems 3 and 6, is

clearly consistent with these plots.
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91"

Figure 6: A plot of the function f(x) (solid line), the approximatidns Ss,0(x)

(longer dashed line), Ss,l(z) (shorter dashed line), and $4,2(z) (dotted line) for Example

3. Note that the oscillations present in $6,0 away from the regions of large curvature

of f have essentially been eliminated in $4,2, while Ss,1 is not much of an improvement

over Se,o.
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Figure 7: A plot of log IBk[/log k vs. 1/log k for Example 1 with M = 1,2, 3,

and 4, for N = 20. The increased rate of decay to zero of the coefficients Bk with

increasing values of M is clearly evident, especially when compared with original Fourier

coefficients bk, which decay only like 1/k.
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0
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7r

Figure 8: A plot of the exact solution u (°_'°) (solid line), as well as the approxima-

tions u (4'°) (dashed line) and u (3'1) (dotted line), for the simple heat conduction problem

of section 7, when t = 0.01 (upper set of curves) and t = 0.05 (lower set of curves). The

corresponding comparison at t = 0 is the same as shown in Figure 1 for 0 < x < 7r.
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_/2 x

Figure 9: A comparison of the approximations S6_q,q, for q = 0, 1, ..., 5 for Ex-

ample 1. In this case, the figure seems to suggest that perhaps Sa,3 is "best" of the
approximations SN,M, with N + M = 6.
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Figure 10: For the 27r-periodic function f defined by f(x) = 7c:rl2, for -7r/2 <

x < 7c/2, and f(x) = 0, otherwise, in [-_r,r], a plot of f(z) (solid lines) and the

approximations $10,0 (longer dashed line), $91, (shorter dashed line), and S (1)4,1+ S(:2)4,1

(dotted line) for 0 < z < _r. The improved quality of the approximation ¢(1) S(2)__ __ '-'4,1 + 4,1,

over either $1o,1 or $9,1, is apparent.
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